
Dr. Javed Akhter*  & Prof. Subrata Kumar Midya

Department of Atmospheric Sciences, 
University of Calcutta, Kolkata-700019

*Email: akhterexpressju@gmail.com



o Lightning is one of the severe atmospheric phenomena posing serious threats to human life

and property. According to several studies (Illiyas et al., 2014 ;Singh and Singh, 2015;

Yadava et al., 2020), lightning events in India cause deaths of more than 2000 people every

year, which is about 9 percent of total deaths due to natural disasters.

o However, the limited availability of lightning data especially over the Indian Sub-continent is a

major constraint for lightning study. Hence, the development of proxy lightning data from

other atmospheric variables is very important for both analysis and prediction purposes.

o Recent advances in machine learning (ML) provide the opportunity to develop and predict

lightning using various dynamic–thermodynamic atmospheric variables that influence

lightning activity.

o Developing ML models with spatial data is a challenging task due to the presence of spatial

auto-correlation (SAC) especially for gridded climate data. Use of spatial predictors using

Moran’s Eigenvector Maps (MEMs) is a useful approach to remove SAC and develop robust

ML models.





Lightning data:

Flash rate density (FRD) data obtained from Low Resolution (2.5° × 2.5°) Monthly

Climatology Time Series (LRMTS) v2.3 generated by Optical Transient Detector (OTD) and

Lightning Imaging Sensor (LIS) onboard TRMM satellite [Data period: 1996-2013]

Reanalysis data:

Atmospheric predictors like Convective Available Potential Energy (CAPE), Convective

Precipitation (CP), Total Column Water Vapour (TCWV), K-index(KI), Total Totals Index

(TTI), 2m Air Temperature (t2m), Specific Humidity (SHUM), Relative Humidity (RHUM),

Upper Air Temperature (TA) are taken from the ECMWF ERA5 monthly reanalysis dataset

(0.25° × 0.25°).

SHUM,RHUM and TA has been used at 500,700 and 850 pressure levels.



Spatial autocorrelation (SAC): Presence of systematic spatial variation in a mapped

variable.

Positive spatial autocorrelation: Adjacent observations have similar data values

Negative spatial autocorrelation: Adjacent observations tend to have very contrasting

values

Random spatial autocorrelation : Similar values are neither close nor distant from each

other



The presence of spatial autocorrelation is seen as posing a serious shortcoming for

hypothesis testing and prediction (Lennon 2000, Dormann 2007b), because it violates

the assumption of independently and identically distributed (i.i.d.) errors of most

standard statistical procedures (Anselin 2002) and hence inflates type I errors,

occasionally even inverting the slope of relationships from non-spatial analysis

(Kuhn 2007).

Beale et al. (2007) found precision of the standardized coefficients produced by

the regression significantly decreased when the residual autocorrelations were

strong.



Null hypothesis: The attribute being analyzed is randomly distributed among the features in the 
study area. When p-value returned is statistically significant, null hypothesis can be rejected.



The Moran eigenvector approach (Dray et al. 2006; Griffith and Peres-Neto 2006) involved the spatial

patterns represented by maps of eigenvectors; by choosing suitable orthogonal patterns and adding

them to a linear or generalized linear model, the spatial dependence present in the residuals can be

moved into the model.

MEMs are a set of spatial weight matrix eigenvectors into a regression model specification to capture

SAC (Griffith,2003). Eigenvectors can be extracted from a doubly centered spatial weights matrix 𝐂
,which can be expressed as follows:

𝐌𝐂𝐌=(𝐈−𝟏𝟏𝑇/𝑛)𝐂(𝐈−𝟏𝟏𝑇/𝑛)

where 𝐈 is an 𝑛 -by-𝑛 identity matrix, 𝟏 is a 𝑛-by-1 vector of ones, 𝑛 is the number of areal units (Grid

points), 𝑇 is the matrix transpose operator.

A subset of these eigenvectors was included as independent variables in a model specification and

captures SAC so that a linear regression did not suffer from a violation of the independence assumption

that is caused by SAC (Griffith,2003). This subset can be identified from a candidate eigenvector set with

a stepwise regression procedure (Chun et al., 2019).

Moran’s Eigenvector Map (MEM) 





Lightning Climatology

(1996-2013)



SVM Spatial-SVM

Moran’s I 0.022 0.002

p value 0.00 0.26

No. of MEMs - 3

R2 0.88 0.97

RMSE 0.02 0.01

MAE 0.02 0.01

Non-spatial: sigma = 0.5 and C = 8
Spatial: sigma = 0.1 and C = 8

Support Vector Machine (SVM) Training period: 1996-2010



R 0.97

d 0.98

NSE 0.91

RSR 0.29

Testing period: 2011-2013



GBM Spatial-GBM

Moran’s I 0.02 -0.02

p value 0.004 0.18

No. of MEMs - 3

R2 0.82 0.93

RMSE 0.03 0.02

MAE 0.02 0.01

Non-Spatial: interaction.depth = 3, n.trees = 2000,shrinkage = 0.01,n.minobsinnode = 5
Spatial: n.trees = 2000, interaction.depth = 2, shrinkage = 0.1 and n.minobsinnode = 5

Gradient Boosting Machine (GBM) Training period: 1996-2010



R 0.98

d 0.98

NSE 0.93

RSR 0.27

Testing period: 2011-2013



NNET Spatial-NNET

Moran’s I 0.11 0.001

p value 0 0.29

No. of MEMs - 3

R2 0.78 0.98

RMSE 0.03 0.01

MAE 0.02 0.007

Non-spatial: size = 5, decay = 0.01
Spatial: size = 14, decay = 0.001

Artificial Neural Network (NNET) Training period: 1996-2010



R 0.97

d 0.98

NSE 0.92

RSR 0.28

Testing period: 2011-2013



RF Spatial-RF

Moran’s I 0.14 0.06

p value 0 0

No. of MEMs - 4

R2 0.80 0.92

RMSE 0.03 0.02

MAE 0.02 0.01

Spatial: mtry=4,ntree=1000
Non-spatial: mtry=4,ntree=1000

Random Forest (RF) Training period: 1996-2010



R 0.98

d 0.98

NSE 0.93

RSR 0.27

Testing period: 2011-2013



Comparison among 4 models during two seasons:



Comparison among 4 models during two seasons:
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